Quantum Technologies
FIicH held
FYIIE SFRATHT SR IIC Tl &g FicH

AT AR {‘C',Cb ICbebc', Dl HQJIC’rTIIjCQC'I
TRATRY STH= & A1 FHIG A

*XTfOrepT TR, TSIT ¥RTS?, UH. dTs. SHera?, TMuTer Sieht 3R SR, fasrarreaa—?

XY [V I, AT TYATY STTUEITT i (M99 B3), ZTe-400085, 4R
1A AT SN 10T (Fgeaved?) gt geref difaml s arrHt s &,

CTeT HeTHT STFHETT HelTT (SIHSVBIR), 495

l z-g

Wqﬂgﬁﬁﬂ?@‘cﬁww‘cﬁaﬂﬁaﬁqqmw NBEGR (kswi%ﬂl %W@Qﬂﬁgﬁ%ﬂﬁﬁﬁﬁ

3N G fohRpe ddicd GircdaN b bl |ﬁ6w2ﬂ1hhcmlg\qdn VDI B Bl
aakﬂ%jﬁ?ﬁfﬁﬁ%ﬁ&ﬂ%&ﬁﬁ%Hmuqﬁa%éﬁ%a

Quantum Control

$»HPr—

Integration of Quantum Software Stack Qiskit
to Custom Arbitrary Waveform Generator for
Qubit Calibration and Gate Operations

Radhika Nasery', Sandeep Bharade®, M. Y. Dixit, Gopal Joshi* and R. Vijayaraghavan®
*Accelerator Control Division, Bhabha Atomic Research Centre (BARC), Trombay-400085, INDIA
*Quantum Measurement and Control (QuMaC) Laboratory,Department of Condensed Matter Physics and
Materials Science, Tata Institute of Fundamental Research (TIFR), Mumbai

[ossiosieoicrai]
T — ABSTRACT

Quantum Software Stack integration with a Arbitrary Waveform Generator (AWG) is
important for executing quantum algorithms and quantum experiments on physical qubits.
This article demonstrates successful integration of Qiskit Quantum Software Stack with
AWG through development of Qiskit Backend.

KEYWORDS: Quantum software stack, Arbitrary waveform generator, Qiskit

Compilation Pipeline

*Author for Correspondence: Radhika Nasery
E-mail: radhikan@barc.gov.in

90 BARC newsletter July-August 2024

Quantum Technologies

Introduction

Quantum computing is rapidly progressing, demanding
sophisticated control mechanisms for precise manipulation of
quantum bits - qubits. Qubits are the fundamental units of
quantum information in quantum computing, and precise
control over their states is crucial for implementing quantum
gates and executing quantum algorithms. Arbitrary Waveform
Generators (AWG) are used to produce user defined, precise
and tailored RF waveforms to manipulate the state of qubits.
Quantum algorithms are implemented using sequences of
quantum gates. AWG support the creation of customizable
pulse sequences, enabling the implementation of qubit
calibration, quantum experiments and implementation of
quantum circuits. To make quantum computers accessible to
users and enable the development of quantum applications, a
quantum software stack is required. This article presents
integration of Qiskit quantum stack with AWG.

Quantum Software Stack

A quantum stack is the hierarchy of components, from
the high-level algorithms down to the physical qubits that
abstracts away the complexity of the underlying quantum
hardware [1]. It typically consists of layers (Fig.1) like a
quantum algorithm layer, an intermediate representation layer

and a quantum control and readout electronics interface layer.
The quantum algorithm layer is where quantum algorithms are
implemented using high-level quantum programming
languages and software development kits (SDKs). This layer is
also used to define qubit calibration experiments. The
quantum compilers convert the algorithms written in high level
language to a format known as Intermediate Representation
(IR). IR layer provides a hardware-agnostic representation of
quantum circuits that are compiled and optimized for different
target qubit architectures. OpenQASM [2] is an example of a
popular IR for quantum circuits. The compiler optimization
performs circuit rewriting, transformation, and optimization
techniques to map logical qubits in the quantum circuit to the
physical qubits of the hardware (as shown in Fig.2), while
minimizing circuit depth and gate count. It also synthesizes
gates into the native gate set supported by the target hardware.
The quantum analog-digital interface layer is responsible for
converting the digital gate-level instructions to analog
waveforms that control the qubits. This layer handles tasks like
frequency control, qubit initialization, gate application, and
measurement. A micro-architecture is typically implemented to
translate IR for arbitrary waveform generation. This is where
arbitrary waveform generators play a key role in precisely
shaping the control pulses. The physical qubit control layer

Quantum Intermediate

Algorithms Representation

Application * Quantum
layer assembly like
* Programs Compilers language
written in high * Hardware
level languages agnostic

: Python/C++ representation

Arbitrary

Waveform
Generator

* Controland
Readout
Electronics

Micro -
architecture

To Qubits

Fig.1: Quantum Software Stack

Qiskit Program

from giskit import QuantumCircuit 0 “id”
qc = QuantumCircuit(2, 2) : 2
qc.h(@) 2 o
qc.cx(e, 1)

qc.measure([@, 1], [e, 1]) 5 i &
qc.draw('mpl") : ey
print(qc) 5 “reset”

circ = transpile(qc, backend)
print(circ)

Qiskit Circuit

Global Phase. nM

Transpiled Circuit in Basis Gates

T
o0 -

QASM Object of Circuit

OpenQASM2 Experiment:

Header:

{'clbit labels': [['c*, @], ['c*, 1]],
‘creg_sizes': [['¢*', 2]],
‘global phase’: 8.7853981633974483,
‘memory slots®: 2,
‘metadata”: {},

‘n_qubits®: 7,

‘name’: “circuit-152°

‘qreg_sizes': [['g', 7]],

‘qubit labels‘: [[‘'q‘, @],
[aq, 11,
['q', 2],
[*a*, 3],
['a'. 4],
[‘a*, 5],
['q*. 611}

Config:
{'memory slots‘: 2, ‘n_qubits‘: 7}
Instruction: rz
params: [1.5707963267948966]
qubits: (@]

Instruction: sx
qubits: [@]

Instructiom: rz
params: [1.5707963267948966]
qubits: [@]

Instruction: cx
qubits: [, 1]

el

1

Instruction: measure
qubits: [@]
memory: [@]

AR
w
0 1

C

Instruction: measure
qubits: [1]
memory: [1]

Fig.2: Qiskit Compilation Pipeline.

July-August 2024 BARC newsletter 91

Quantum Technologies

|

Quantum Circuit
/ Transpiler
Pulse Schedule

QObject

Arbitrary
: Waveform
Provider Backend Job Sl
Micro-architecture
Fig.3: Qiskit Backend Integration.
AWG similarities in terms of the overall architecture, they differ in
microprocessor aspects like the supported quantum hardware, programming

* timed processor

= ASM instructions for BRE aintd Sl
ADC and Readout

Generation using

~ L2+ signal generation, read- 7
Signal Processing bagck Iiuping !
), f

conditional access,,
arithmetic and register
access

i

DDS and/or stored
memory

Master Clock

‘l pigital I/O

Fig.4: AWG Architecture
interacts directly with the qubits to apply the required
operations.

Some of the leading quantum software stacks are
Qiskit[3] (IBM), Cirq[4] (Google), Q# [5] (Microsoft), Forest
(Rigetti) [6], and Ocean (D-Wave)[7]. While they share many

provider = BARCProviderInterface()
print("sss== Initialized the provider

n_qubits Number of qubits
basis_gates Basis gate set of the target device
gates Gate name and Qasm def
open_pulse If pulse library is supported
coupling_map Physical qubit coupling map
qubit_freq_est Estimated Qubit Frequency

Estimated Readout Resonator
Frequecy

meas_freq_est

meas_levels RAW, AVERAGE

pulse_library Raw |,Q data samples for sequence

interface from user.py

languages and feature set. Qiskit has emerged as one of the
most popular quantum software stacks due to its
comprehensive feature set, extensibility, and strong community
support. It is an open-source SDK that supports multiple
programming languages (Python, Java, Swift, JavaScript),
simulators, and quantum hardware backends (IBM, lonQ,
Honeywell). Qiskit also provides higher-level abstractions and
applications for domains like optimization, machine learning,
finance, and chemistry. Therefore, open source Qiskit quantum
software stack was selected for integration with AWG. Fig.2
shows the Qiskit compilation pipeline. A quantum circuit is
defined in python high level language and submitted for
compilation. The compiler transpiles the circuit into basis gates
of the quantum hardware and a IR representation in form of
OpenQASM2 object is generated.

Development of Qiskit Backend

The Qiskit backend [8] is the interface between the
quantum circuits defined in the quantum algorithm layer and
the underlying quantum hardware or simulator. It provides a

dt

Sampling time

ch_name_idx Qubit, readout and acquire

channels
ch_idx_rdds ADC to DAC readout mapping
ch_idx_page Proc page corresponding to
DAC, ADC channel
ch_idx_reg Proc registers corresponding

to freq, gain, mode, phase

Misc pages and registers for
shots

misc_page, misc_reg

initial_cycle_offset
adc_trig_offset
Acquire_pad

Initial offset of sync of proc
Trig offset of DAC for acq
Time offset for ADC acq

Fig.5: BARCPoviderInterface and Backend Properties for custom AWG.

92 BARC newsletter July-August 2024

Quantum Technologies

PYTHON PROGRAM

pring("s+x+s rom [
qubit chan = pulse.DriveChannel (@)
meas chan = pulse.MeasureChannel (@)
acq_chan = pulse.AcquireChannel (d)

channels from pulse acquired in from user.py)

pring("eeses meas from pulse acquired in from user.py saakaeet)
meas_amp = 0.8

meas duration = get closest multiple of 16(3200)

meas_pulse = pulse.library.Constant(meas duration, meas amp)

meas freq count = 1

meas_freq start = 7306 * MHz

meas_freq_stop = 7460 * Mz

meas fregs = np.linspace(meas freq start, meas freq stop, meas freq count)

print(nevess sched pr
schedule = pulse.Schedule(nane="Fr)
schedule += pulse.Play(meas_pulse, meas_chan)

schedule += pulse.Acquireimeas duration, acq chan, pulse.MemorySlot(8))

SCHEDULE GENERATED

Name: Frequency sweep, Duration: 3200.0 dt

i
1)
no freg Constant

0 210 420 2830 3040 3250,
System cycle time (dt)

print(schedule.instructions)
((8, Acquire(3200, AcquireChannel(B), MemorySlot(@))),

(8, Play(Constant(duration=3200, amp=1, angle=8), MeasureChannel(®))))

Fig.6: Python Program to provide schedule for single frequency Loopback Testing

unified API for running quantum circuits on different targets
and returning the measurement results. To integrate a AWG
into the Qiskit backend, a new (as shown in Fig. 3) backend
provider, backend, job and result classes are implemented that
conform to the Qiskit backend interface specifications.
Quantum circuits are transpiled i.e. optimized by a compiler
and then give the output in format of Quantum Object- Qobj.
Backends take in a Qobj as input, which is a QASM - IR
representation and a Job object is returned. Job instances can
be thought of as the “ID” for a submitted job. They find out the
execution's state at a given pointin time (for example, if the job
is queued, running, or has failed) and also allow control over
the execution of the job on the AWG. The raw data sample
stream from measurement operation of the qubit from the
AWG is routed to Result class and then back to the higher level
Quantum Circuit/ Pulse Schedule program.

Integration with AWG

The AWG has 3 main parts (Fig.4): micro-processor,
readout processing block and signal generating block. The

PYTHON PROGRAM

job = backend. run(
schedule, meas level=MeasLevel.RAW,
meas_return=MeasReturnType.AVERAGE, shots=num_shots,
schedule los=schedule los,
rep delay=rep_delay,
shots_per_set=1,

)

QISKIT BACKEND OUTPUT

Pulse Qobj: 8e@76084-8098-4daf-b5bl-2ed57ebeff86:
Config: {*init qubits': True

‘meas_level': @,

‘meas _lo freq': [7.3],

‘meas_return': ‘awvg®,

“memory’: False,

‘memory slot_size': 100,

“memory_slots': 1,
“n_qubits®: 1,
“parametric pulses®:
pulse_library: [1],
"qubit lo freq': [4.6],
‘rep delay': 10.0,

‘rep time': [],

["constant', ‘gaussian’', ‘gaussian_square®],

Header: {"backend name': " AWG
Experiments:

. "backend wversion': "®.1"}

Pulse Experiment:
Header:
{"memory_slots': 1,
Config:

i

‘metadata’: {}, 'name’': 'Frequency sweep'}

Instruction: parametric pulse
te: e

ch: me

pulse shape: constant

parameters: {'duration’': 320@, 'amp’': (©.8+0j)}
Instruction: acquire

te: 8

duration: 3200
qubits: [®]
memory slot: [@]

micro-processor with has added timed Assembly Language
(ASM) instructions to generate RF pulses. RF pulses are
generated for control and readout of qubits. The key aspect of
the integration is mapping the quantum gates in the circuit to
the corresponding analog waveforms generated by the AWG.
This requires a gate-to-pulse mapping given by Fig.5 that
translates each quantum gate to a sequence of control pulses
with specific amplitudes, frequencies, and durations. The
backend provider will use this mappingto convert the quantum
circuit into a series of AWG instructions that generate the
required pulses. The AWG integration also needs to handle
aspects like synchronization, measurement, and feedback
between the quantum and classical systems. Fig.5 also shows
the python program invoking the implemented
“BARCProviderinterface”.

Results

Fig.6 shows the Qiskit python program describing the
schedule of pulses to be run for a single frequency, constant
amplitude loopback testing and corresponding schedule

ASSEMBLY PROGRAM

// Program
synci 200; //init delay
memri @, $1, 0; //shots

LOOP_I: regui 2, $17, 6; //ch 4 phase
regwi 2, $19, 32767; f/ch 4 gain
regui 4, $17, 6; //¢h 7 phase
regui 4, $19, 32767; //ch 7 gain

requi 2, $16, 628053333; //ch 4 freq
bitwl 2, $16, $16 << 2;

mathi 2, $16, $16 + 1;

regui 4, $16, 996693333; //ch 7 freg

bitwi 4, $16, $16 << 2;
mathi 4, $16, $16 + 3;
regui 4, $18, 0; //ch T addr

regui 4, $19, 32767; //ch 7 gain
regul 4, $26, 590024; //ch T mode
requi 4, $21, 6; /ich 7t

set 7, 4, §16, $17, $18, $19, s20, $21;
requi 0, $16, 16385;
setl 0, 0, $16, 180;
regwi 0, $16, 8;

seti 0, 0, $16, 280;
waiti 0, 826;

synci 1536;

loopnz 0, $1, GLOOP I
end ; 7

//ch 7 play
//start average buffer bits
//start average buffer
//stop average buffer bits
//stop average buffer
{/rep delay
/lrep delay

Fig.7: Python Program to run a pulse schedule and ASM output for AWG.

July-August 2024 BARC newsletter 93

Quantum Technologies

OUTPUT

MultiView 2z Spectrum % Phase Noise x

100001 pts

-Valie V-Valie

WV Function Re
7.297967 GHz

-566.314 MHz

-49.01 dB

RAW DATA RESULT

Averages = 0

—— | value, ADC
Q value, ADC
—— mag, ADC

W

600

400 A

200

—200

-400 1

—600 A

0 25 50 75 100 125 150 175 200
Clock ticks

Fig.8: RF Frequency Spectrum Output and Results of Loopback Testing in Qiskit Python Program.

generated. Qubit channel is the channel for qubit state
manipulation. Measure Channel is the channel for readout
resonator pulse generation and Acquire Channel is the
waveform acquisition channel for Qubit state measurement.

Fig.7 shows this Schedule running as a job on the
Backend. The Backend compiles this Schedule as a Qiskit
Backend Object and generates ASM language program to be
run on the AWG using language to language parser. Generated
ASM program is executed on micro-processor. The DAC and
ADC are loop-backed.

Fig.8 shows the generated frequency of 7.3GHz as seen
on Spectrum Analyzer. The tproc reads the ADC measurement
channel and this datais displayed as Qiskit Result.

Conclusion

Qiskit Backend is successfully developed for AWG. The
Backend integrates the Qiskit stack with the analog RF pulse
generation. Python program generating a Qiskit pulse schedule
of a single frequency loopback testing is successfully
demonstrated on the backend. Future work involves
integration of Qiskit experiment library with Backend. The AWG
Backend for Qiskit software stack can be installed at intranet
facility so that users across organization can avail this facility
for quantum experiment.

Acknowledgments

We sincerely appreciate QuMaC Lab, TIFR, for their
critical role in advancing this research. Their exceptional
support and expertise have significantly contributed to the
outcomes of this study.

94 BARC newsletter July-August 2024

References

[1] Frederic T. Chong, Diana Franklin & Margaret Martonosi,
“Programming languages and compiler design for realistic quantum
hardware”, Nature 549, 180-187 (2017).
https://doi.org/10.1038/nature23459

[2] Andrew W. Cross, Lev S. Bishop, John A. Smolin, Jay M.
Gambetta, “Open Quantum Assembly Language”,
arXiv:1707.03429v2[quant-ph], 13 Jul 2017

[3] GadiAleksandrowicz, et al. “Qiskit: An Open-source Framework
for Quantum Computing. 0.7.2” , Zenodo, 23 Jan. 2019,
doi:10.5281/zenodo.2562111.

[4] Cirg Developers, “Cirq”. Zenodo, Dec. 01, 2023. doi:
10.5281/zen0do.10247207.

[5] A.S.Tolba, M. Z. Rashad, and Mohammed A. El-Dosuky. 2013
“Q#, a quantum computation package for the .NET platform”. arXiv
preprintarXiv:1302.5133

[6] Peter J. Karalekas, et al. “Pyquil: Quantum Programming in

Python. v2.17.0 ", Zenodo, 30 Jan. 2020,
doi:10.5281/zen0d0.3631770.
[7] “D-Wave's Ocean Software,” http://ocean.dwavesys.com

(2020)

[8] IBM Quantum Documentation, APl Reference, Providers Interface,
https://docs.quantum.ibm.com/api/qiskit/qiskit.providers.Backend.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5

